

Performance Studies for the LHCb Experiment

Marcel Merk
NIKHEF

Representing the LHCb collaboration

19 th International Workshop on Weak Interactions and Neutrinos Oct 6-11, Geneva, Wisconsin, USA

B Physics in 2007

- Direct Measurement of angles:
 - □(sin(2□)) ≈ 0.03 from J/□ Ks in B factories
 - Other angles not precisely known
- Knowledge of the sides of unitary triangle:

(Dominated by theoretical uncertainties)

- □(|V_{cb}|) ≈ few % error
- □(|V_{ub}|) ≈ 5-10 % error
- $\square(|V_{td}|/|V_{ts}|) \approx 5-10\%$ error (assuming $\square m_s < 40 \text{ ps}^{-1}$)
- In case new physics is present in mixing, independent measurement of

 can reveal it...

B Physics @ LHC

√s	14 TeV
L (cm ⁻² s ⁻²)	2x10 ³² cm ⁻² s ⁻¹
\square_{bb}	500
□ _{inel} / □ _{bb}	160

- ⊕ Triggering is an issue
- \odot All b hadrons are produced: B_u (40%), B_d (40%), B_s (10%), B_c and b-baryons (10%)
- Many tracks available for primary vertex
- Many particles not associated to b hadrons
- 8 b hadrons are not coherent: mixing dilutes tagging

LHCb: Forward Spectrometer with:

- Efficient trigger and selection of many B decay final states
- Good tracking and Particle ID performance
- Excellent momentum and vertex resolution
- Adequate flavour tagging

Simulation and Reconstruction

No true MC info All trigger, reconstruction and selection studies are based on full used anywhere! Pythia+GEANT simulations including LHC "pile-up" events and full pattern recognition (tracking, RICH, etc...) **T**3 RICH1 VELO Sensitivity studies are based on fast simulations using efficiencies and resolutions and from the full simulation

Evolution since Technical Proposal

Track finding strategy

Long tracks	highest quality for physics (good IP & p resolution)
Downstream tracks	needed for efficient K _s finding (good p resolution)
Upstream tracks	lower p, worse p resolution, but useful for RICH1 pattern recognition
T tracks	useful for RICH2 pattern recognition
VELO tracks	useful for primary vertex reconstruction (good IP resolution)

Result of track finding

Typical event display:

Red = measurements (hits)

Blue = all reconstructed tracks

VELO

20 ☐ 50 hits assigned to a long track: 98.7% correctly assigned

On average: 26 long tracks 11 upstream tracks 4 downstream tracks 5 T tracks 26 VELO tracks

Ghost rate vs p_T :

TT

Ghosts: Negligible effect on b decay reconstruction

Experimental Resolution

Flavour tag

Knowledge of flavour at birth is essential for the majority of QP measurements

tagging strategy:

- opposite side lepton tag (b_l)
- opposite side kaon tag (b_c_s) (RICH, hadron trigger)
- same side kaon tag (for B_s)
- opposite B vertex charge tagging

b_c_l (lepton tag)

Combining tags	tag [%]	Wtag [%]	_eff [%]
$B_d \square \square \square$	42	35	4
$B_s \square K K$	50	33	6

Efficiencies, event yields and B_{bb}/S ratios

Trig | Tot. | Vis | Annual |

		IXCC.	501.	mag.	100	V 15.	Amnuai	Dis
	eff.	eff.	eff.	eff.	eff.	BR	signal	from
Technical Design Report	(%)	(%)	(%)	(%)	(%)	$(10^{\Box 6})$	yield	bb bkg.
$\mathbf{B}^0 \ \square \ \square^+\square^\square$	12.2	91.6	18.3	33.6	0.69	4.8	26k	< 0.7
$B_s \square K^+ K^\square$	12.0	92.5	28.6	36.7	0.99	18.5	37k	0.3
$B_s \square D_s \square^+$	5.4	80.6	25.0	31.1	0.34	120.	80k	0.3
$B_s \square D_s^{\square +} K^{+\square}$	5.4	82.0	20.6	29.5	0.27	10.	5.4 k	< 1.0
$B^0 \square D^{\sim 0}(K\square)K^{*0}$	5.3	81.8	22.9	35.4	0.35	1.2	3.4k	< 0.5
$B^0 \square J/\square(\square\square) K^0_S$	6.5	66.5	53.5	60.5	1.39	20.	216k	0.8
$B^0 \square J/\square(ee) K^0_S$	5.8	60.8	17.7	26.5	0.16	20.	26k	1.0
$B_s \square J/\square(\square\square)\square$	7.6	82.5	41.6	64.0	1.67	31.	100k	< 0.3
$B_s \square J/\square(ee) \square$	6.7	76.5	22.0	28.0	0.32	31.	20 k	0.7
$\mathbf{B}^0 \ \square \ \square \square$	6.0	65.5	2.0	36.0	0.03	20.	4.4k	<7.1
$B^0 \square K^{*0} \square$	9.5	86.8	5.0	37.8	0.16	29.	35k	< 0.7
$B_s \square \square \square$	9.7	86.3	7.6	34.3	0.22	21.	9.3k	< 2.4

Sel .

Nominal year = 10^{12} bb pairs produced (10^7 s at L=2 $\square 10^{32}$ cm $\square 2$ s $\square 1$ with \square_{bb} =500 $\square b$) Yields include factor 2 from CP-conjugated decays

Det Rec

CP Sensitivity studies

CP asymmetries due to interference of Tree, Mixing, Penguin, New Physics amplitudes:

Mixing phases:

- Time dependent asymmetry in B_d->J/□ K_s decays
 - Sensitive to
- Time dependent asymmetry in B_s->J/∏ ∏ decays
 - Sensitive to

Measurements of Angle

- Time dependent asymmetries in Bs->DsK decays. Interference between b->u and b->c tree diagrams due to Bs mixing
 - Sensitive to □ + □ (Aleksan et al)
- Time dependent asymmetries in B->□□ and Bs->KK decays. Interference between b->u tree and b->d(s) penguin diagrams
 - \triangleright Sensitive to \square \square_d , \square_s (Fleischer)
- Time Integrated asymmetries in B-> DK* decays. Interference between b->u and b->c tree diagrams due to D-D mixing
 - Sensitive to (Gronau-Wyler-Dunietz)

B_s oscillation frequency: $\square m_s$

- Needed for the observation of CP asymmetries with B_s decays
- Use B_s □ D_s□□+
- \square If $\square m_s = 20 \text{ ps}^{\square 1}$

$$\square(\square m_s) = 0.011 \text{ ps}^{\square 1}$$

Can observe >5□ oscillation signal if □m_s < 68 ps□¹</p>

well beyond SM

prediction

Mixing Phases

 Bd mixing phase using B->J/□ K_s

Background-subtracted

B⁰ J/ (||)K_S CP asymmetry

Angular analysis to separate CP even and CP odd

Time resolution is important:

If $\square m_s = 20 \text{ ps}^{\square 1}$:

 $[[]_{s}/[]_{s}] = 0.018$

NB: In the SM, $\square_s = \square 2 \square \sim \square 0.04$

1. Angle [from B_s] D_sK

(2 Tree diagrams due to Bs mixing)

Simultaneous fit of $B_s -> D_s \square$ and $B_s -> D_s K$:

- Determination of mistag fraction
- Time dependence of background

Time dependent asymmetries:

$$B_s(B_s) \rightarrow D_s K^+: \underline{\quad} \Box_{T1/T2} + (\Box + \Box_s)$$

$$B_s(B_s) \rightarrow D_s + K = \prod_{T_1/T_2} - (T_s)$$

After one year, if $\square m_s = 20 \text{ ps}^{\square 1}$, $\square \square_s / \square_s = 0.1$, $55 < \square < 105 \text{ deg}$, $\square 20 < \square_{T1/T2} < 20 \text{ deg}$:

No theoretical uncertainty; insensitive to new physics in B mixing

2. Angle [from B⁰] [+] and B_s K+K

(b->u processes, with large b->d(s) penguin contributions)

Measure time-dependent CP asymmetries in B⁰ □ □ □ □ and B_s K+K decays:

$$A_{CP}(t) = A_{dir} \cos([m \ t) + A_{mix} \sin([m \ t))$$

- Method proposed by R. Fleischer:
 - SM predictions:

$$A_{dir}(B^{0} \square^{+}\square^{-}) = f_{1}(d, \square, \square)$$

$$A_{mix}(B^{0} \square^{+}\square^{-}) = f_{2}(d, \square, \square, \square, \square)$$

$$A_{dir}(B_{s}\square^{+}K^{+}K^{\square}) = f_{3}(d', \square', \square)$$

$$A_{mix}(B_{s}\square^{+}K^{+}K^{\square}) = f_{4}(d', \square', \square, \square, \square)$$

d exp(i□) = function of tree and penguin amplitudes in B⁰□ □+□□
 d' exp(i□') = function of tree and penguin amplitudes

in B_s ∏ K+K□

Assuming <u>U-spin flavour symmetry</u>(interchange of d and s quarks):

□ 4 measurements (CP asymmetries) and∃ unknown (□ d and □) □ can solve for □

2. Angle \square from $B^0\square$ $\square^+\square^\square$ and $B_s\square$ K^+K^\square (cont.)

- Extract mistags from B⁰ K+□ and B_s □ □+K□
- \square Use expected LHCb precision on \square_d and \square_s

blue bands from $B_s \square K^+K^\square (95\%CL)$ red bands from $B^0 \square \square^+\square (95\%CL)$ ellipses are 68% and 95% CL regions 1.2 (for $\square_{nput} = 65 \text{ deg}$)

If $\Box m_s = 20 \text{ ps}^{\Box 1}$, $\Box \Box_s / \Box_s = 0.1$, d = 0.3, \Box = 160 deg, 55 < \Box < 105 deg:

 $\square(\square) = 4\square 6 \deg$

U-spin symmetry assumed; sensitive to new physics in penguins

3. Angle [] from $B^0[]$ D^0K^{*0} and $B^0[]$ D^0K^{*0}

(Interference between 2 tree diagrams due to D0 mixing)

Application of Gronau-Wyler method to D⁰K^{*0} (Dunietz):

- Measure six rates (following three + CP-conjugates):

 - No proper time measurement or tagging required
 - □ Rates = 3.4k, 0.6k, 0.5k respectively (CP-conj. included), with
 B/S = 0.3, 1.4, 1.8, for □=65 degrees and □=0

Measurement of angle [] New Physics?

Systematic Effects

Possible sources of systematic uncertainty in CP measurement:

- Asymmetry in b-b production rate
- Charge dependent detector efficiencies...
 - can bias tagging efficiencies
 - can fake CP asymmetries
- CP asymmetries in background process

Experimental handles:

- Use of control samples:
 - Calibrate b-b production rate
 - Determine tagging dilution from the data:

e.g.
$$B_s->D_s\square$$
 for $B_s->D_sK$, $B->K\square$ for $B->\square\square$, $B->J/\square K^*$ for $B->J/\square K_s$, etc

- Reversible B field in alternate runs
- Charge dependent efficiencies cancel in most B/B asymmetries
- Study CP asymmetry of backgrounds in B mass "sidebands"
- Perform simultaneous fits for specific background signals:

e.g.
$$B_s -> D_s \square$$
 in $B_s -> D_s K$, $B_s -> K \square \& B_s -> K K$, ...

Conclusions

- LHC offers great potential for B physics from "day 1"
 LHC luminosity
- LHCb experiment has been reoptimized:
 - Less material in tracking volume
 - Improved Level1 trigger
- Realistic trigger simulation and full pattern recognition in place
- Promising potential for studying new physics

